www.artificialintelligenceupdate.com

Learning DSPy:Optimizing Question Answering of Local LLMs

Revolutionize AI!
Master question-answering with Mistral NeMo, a powerful LLM, alongside Ollama and DSPy. This post explores optimizing ReAct agents for complex tasks using Mistral NeMo’s capabilities and DSPy’s optimization tools. Unlock the Potential of Local LLMs: Craft intelligent AI systems that understand human needs. Leverage Mistral NeMo for its reasoning and context window to tackle intricate queries. Embrace the Future of AI Development: Start building optimized agents today! Follow our guide and code examples to harness the power of Mistral NeMo, Ollama, and DSPy.

Learning DSPy with Ollama and Mistral-NeMo

In the realm of artificial intelligence, the ability to process and understand human language is paramount. One of the most promising advancements in this area is the emergence of large language models like Mistral NeMo, which excel at complex tasks such as question answering. This blog post will explore how to optimize the performance of a ReAct agent using Mistral NeMo in conjunction with Ollama and DSPy. For further insights into the evolving landscape of AI and the significance of frameworks like DSPy, check out our previous blog discussing the future of prompt engineering here.

What is Mistral NeMo?

Mistral NeMo is a state-of-the-art language model developed in partnership with NVIDIA. With 12 billion parameters, it offers impressive capabilities in reasoning, world knowledge, and coding accuracy. One of its standout features is its large context window, which can handle up to 128,000 tokens of text—this allows it to process and understand long passages, making it particularly useful for complex queries and dialogues (NVIDIA).

Key Features of Mistral NeMo

  1. Large Context Window: This allows Mistral NeMo to analyze and respond to extensive texts, accommodating intricate questions and discussions.
  2. State-of-the-Art Performance: The model excels in reasoning tasks, providing accurate and relevant answers.
  3. Collaboration with NVIDIA: By leveraging NVIDIA’s advanced technology, Mistral NeMo incorporates optimizations that enhance its performance.

Challenges in Optimization

While Mistral NeMo is a powerful tool, there are challenges when it comes to optimizing and fine-tuning ReAct agents. One significant issue is that the current documentation does not provide clear guidelines on implementing few-shot learning techniques effectively. This can affect the adaptability and overall performance of the agent in real-world applications (Hugging Face).

What is a ReAct Agent?

Before diving deeper, let’s clarify what a ReAct agent is. ReAct, short for "Reasoning and Acting," refers to AI systems designed to interact with users by answering questions and performing tasks based on user input. These agents can be applied in various fields, from customer service to educational tools (OpenAI).

Integrating DSPy for Optimization

To overcome the challenges mentioned above, we can use DSPy, a framework specifically designed to optimize ReAct agents. Here are some of the key functionalities DSPy offers:

  • Simulating Traces: This feature allows developers to inspect data and simulate traces through the program, helping to generate both good and bad examples.
  • Refining Instructions: DSPy can propose or refine instructions based on performance feedback, making it easier to improve the agent’s effectiveness.

Setting Up a ReAct Agent with Mistral NeMo and DSPy

Now that we have a good understanding of Mistral NeMo and DSPy, let’s look at how to set up a simple ReAct agent using these technologies. Below, you’ll find a code example that illustrates how to initialize the Mistral NeMo model through Ollama and optimize it using DSPy.

Code Example

Here’s a sample code that Uses a dataset called HotPotQA and ColBertV2 a Dataset Retrieval model to test and optimise a ReAct Agent that is using mistral-nemo-latest as the llm

Step-by-Step Breakdown of the Code

1. Importing Libraries configuring Datasets:

First We will import DSpy libraries evaluate,datasets,teleprompt.
The first one is used to check the performance of a dspy agent.
The second one is used to load inbuilt datasets to evaluate the performance of the LLms
The third one is used as an optimisation framework for training and tuning the prompts that are provided to the LLMs



import dspy
from dspy.evaluate import Evaluate
from dspy.datasets.hotpotqa import HotPotQA
from dspy.teleprompt import BootstrapFewShotWithRandomSearch

ollama=dspy.OllamaLocal(model='mistral-nemo:latest')
colbert = dspy.ColBERTv2(url='http://20.102.90.50:2017/wiki17_abstracts')
dspy.configure(lm=ollama, rm=colbert)

2. Loading some data:

We will now load the Data and segment to into training data, testing data and development data



dataset = HotPotQA(train_seed=1, train_size=200, eval_seed=2023, dev_size=300, test_size=0)
trainset = [x.with_inputs('question') for x in dataset.train[0:150]]
valset = [x.with_inputs('question') for x in dataset.train[150:200]]
devset = [x.with_inputs('question') for x in dataset.dev]

# show an example datapoint; it's just a question-answer pair
trainset[23]

3. Creating a ReAct Agent:

First we will make a default (Dumb 😂) ReAct agent


agent = dspy.ReAct("question -> answer", tools=[dspy.Retrieve(k=1)])

4. Evaluting the agent:

Set up an evaluator on the first 300 examples of the devset.


config = dict(num_threads=8, display_progress=True, display_table=25)
evaluate = Evaluate(devset=devset, metric=dspy.evaluate.answer_exact_match, **config)

evaluate(agent)

5. Optimizing the ReAct Agent:

Now we will (try to) put some brains into the dumb agent by training it


config = dict(max_bootstrapped_demos=2, max_labeled_demos=0, num_candidate_programs=5, num_threads=8)
tp = BootstrapFewShotWithRandomSearch(metric=dspy.evaluate.answer_exact_match, **config)
optimized_react = tp.compile(agent, trainset=trainset, valset=valset)

6. Testing the Agent:

Now we will check if the agents have become smart (enough)


evaluate(optimized_react)

Conclusion

Integrating MistralNeMo with Ollama and DSPy presents a powerful framework for developing and optimizing question-answering ReAct agents. By leveraging the model’s extensive capabilities, including its large context window tool calling capabilities and advanced reasoning skills, developers can create AI agents that efficiently handle complex queries with high accuracy in a local setting.

However, it’s essential to address the gaps in current documentation regarding optimization techniques for Local and opensource models and agents. By understanding these challenges and utilizing tools like DSPy, developers can significantly enhance the performance of their AI projects.

As AI continues to evolve, the integration of locally running models like Mistral NeMo will play a crucial role in creating intelligent systems capable of understanding and responding to human needs. With the right tools and strategies, developers can harness the full potential of these technologies, ultimately leading to more sophisticated and effective AI applications.

By following the guidance provided in this blog post, you can start creating your own optimized question-answering agents using Mistral NeMo, Ollama, and DSPy. Happy coding!

References

  1. Creating ReAct AI Agents with Mistral-7B/Mixtral and Ollama using … Creating ReAct AI Agents with Mistral-7B/Mixtral a…
  2. Mistral NeMo – Hacker News Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, …

  3. Lack of Guidance on Optimizing/Finetuning ReAct Agent with Few … The current ReAct documentation lacks clear instructions on optimizing or fine…

  4. Introducing Mistral NeMo – Medium Mistral NeMo is an advanced 12 billion parameter model developed in co…

  5. Optimizing Multi-Agent Systems with Mistral Large, Nemo … – Zilliz Agents can handle complex tasks with minimal human intervention. Learn how to bu…

  6. mistral-nemo – Ollama Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistra…
  7. Mistral NeMo : THIS IS THE BEST LLM Right Now! (Fully … – YouTube … performance loss. Multilingual Support: The new Tekken t…

  8. dspy/README.md at main · stanfordnlp/dspy – GitHub Current DSPy optimizers can inspect your data, simulate traces …

  9. Is Prompt Engineering Dead? DSPy Says Yes! AI&U


    Your thoughts matter—share them with us on LinkedIn here.

    Want the latest updates? Visit AI&U for more in-depth articles now.


## Declaration:

### The whole blog itself is written using Ollama, CrewAi and DSpy

👀

AI Agents — Automate complex tasks with CrewAI

Introduction

AI Agents are specialized models designed to perform specific tasks, such as research, recommendation, or prediction. These agents can be chained together to create complex workflows, enabling efficient and organized use of artificial intelligence. This blog post delves into the concept of AI agents, their practical implementation in Python, and explores the CrewAI framework, which simplifies the process of building and managing multi-agent systems.

Understanding AI Agents

What are AI Agents?

AI Agents are autonomous entities that can perform tasks based on their programming and the data they receive. They can be designed to handle a variety of tasks, from simple data collection to complex decision-making processes. The use of multiple agents, each specialized in a specific function, allows for a more efficient and organized approach to AI implementation. For instance, BrightEdge reports that about 57% of US online traffic comes from mobile devices, demonstrating the importance of data-driven decision-making.

Benefits of AI Agents

  1. Task Distribution: By distributing tasks among multiple agents, each optimized for its specific role, AI agents can handle complex workflows more efficiently.
  2. Scalability: Multi-agent systems can be scaled up or down depending on the requirements of the project.
  3. Flexibility: AI agents can be easily integrated into existing applications, making them versatile tools for various industries. As Search Engine Journal reports, “a scannable article is a readable article, and a readable article is one that’s more likely to perform well in the search engines,” highlighting the importance of flexibility in content creation.

CrewAI

CrewAI: A Framework for Building AI Agents

CrewAI is a powerful framework that simplifies the process of building and managing multi-agent systems. It provides tools and methodologies that help in designing and managing complex workflows by chaining multiple agents together. As Mind the Graph notes, organizing your bibliography is a crucial step in presenting your research coherently, and CrewAI aids in this process by providing clear documentation and examples.

Key Features of CrewAI

  1. Agent Creation: CrewAI offers a user-friendly interface for creating AI agents with minimal coding.
  2. Task Management: The framework includes tools for task management, allowing developers to assign specific roles to each agent.
  3. Workflow Orchestration: CrewAI enables the creation of complex workflows by integrating multiple agents, each performing a specific function. EasyBib provides detailed guides on citing sources, which can be useful for documenting the development process with CrewAI.

Practical Implementation with CrewAI

To get started with CrewAI, follow these steps:

  1. Install the CrewAI Library: Begin by installing the CrewAI library using Python.

    pip install crewai
  2. Create Your First Agent: Define your first agent using the CrewAI framework.

    from crewai import Agent
    
    class ResearcherAgent(Agent):
       def __init__(self, name):
           super().__init__(name)
           self.data = []
    
       def gather_data(self):
           # Code to gather data
           self.data.append("Sample Data")
           return self.data
    
       def analyze_data(self):
           # Code to analyze data
           return "Data Analysis"
  3. Chain Multiple Agents: Chain multiple agents together to create a cohesive workflow.

    from crewai import Workflow
    
    class RecommenderAgent(Agent):
       def __init__(self, name):
           super().__init__(name)
           self.recommendations = []
    
       def provide_recommendations(self, data):
           # Code to provide recommendations based on data
           self.recommendations.append("Recommendation 1")
           return self.recommendations
    
    workflow = Workflow([
       ResearcherAgent("Researcher"),
       RecommenderAgent("Recommender")
    ])
    
    workflow.start()

Real-World Applications of AI Agents with CrewAI

  1. Marketing Automation: AI agents can automate repetitive tasks in marketing, such as data collection, analysis, and decision-making.
  2. Customer Service: AI agents can be used to provide customer service, handling inquiries and providing support 24/7.
  3. Healthcare: AI agents can be employed in healthcare to analyze medical data, provide diagnoses, and recommend treatments. For example, Columbia College’s APA citation guide provides detailed instructions on citing sources, which can be useful for documenting real-world applications.

Developing with CrewAI

Developing with CrewAI involves creating complex AI workflows by integrating multiple agents. This approach makes it easier to develop and deploy AI solutions that can handle a variety of tasks efficiently.

Example Workflow

  1. Agent-Based Role Assignment: Assign specific roles to each agent based on the task requirements.
  2. Task Management: Use CrewAI’s task management tools to manage the workflow.
  3. Collaborative Workflows: Chain multiple agents together to create a cohesive workflow that can handle complex tasks.

Practical Approach with CrewAI and Groq

  1. High-Performance Computing: Use Groq for high-performance computing needs, making it an ideal combination for building robust and efficient AI workflows.
  2. Agent-Based Role Assignment: Assign specific roles to each agent based on the task requirements.
  3. Task Management: Use CrewAI’s task management tools to manage the workflow.
  4. Collaborative Workflows: Chain multiple agents together to create a cohesive workflow that can handle complex tasks.

AI Agents Tutorial with Google Colab

Getting started with AI agents using Google Colab is accessible and cost-effective. Here’s a step-by-step guide:

  1. Set Up Google Colab: Open Google Colab and set up your environment.
  2. Install Required Libraries: Install the necessary libraries, including CrewAI.
    !pip install crewai
  3. Create and Run AI Agents: Create and run AI agents using the CrewAI framework.

    from crewai import Agent
    
    class SampleAgent(Agent):
       def __init__(self, name):
           super().__init__(name)
           self.data = []
    
       def sample_task(self):
           # Code to perform a sample task
           self.data.append("Sample Data")
           return self.data
    
    agent = SampleAgent("SampleAgent")
    agent.start()

Benefits of Using Google Colab

  1. Accessibility: Google Colab is free and accessible, making it possible for anyone to get started with AI agents without significant financial investment.
  2. Ease of Use: Google Colab provides a user-friendly interface, making it easier for beginners to start working with AI agents.

Conclusion

AI agents are powerful tools that can be used to automate tasks, enhance decision-making, and improve overall efficiency in various industries. The CrewAI framework simplifies the process of building and managing multi-agent systems, making it easier for developers to create and deploy AI solutions. By following the steps outlined in this guide, developers can build and deploy AI agents that can handle a variety of tasks, from simple automation to complex decision-making. A detailed series of blogs on Crew AI agents is coming soon

References

  1. "AI Agents — From Concepts to Practical Implementation in Python." Towards Data Science, https://towardsdatascience.com/ai-agents-from-concepts-to-practical-implementation-in-python-fb26789b1560. "AI Agents on the other hand can be designed as a crew of specialized models, where each model focuses on a specific task such as researcher …"

  2. "Multi-Agent Systems With CrewAI — Agentic AI Series 3/4." LinkedIn, https://www.linkedin.com/pulse/multi-agent-systems-crewai-agentic-ai-series-34-techwards-ag7lf. "CrewAI is one of the many frameworks available for implementing the concept of agents. It simplifies the process of building AI agents by …"

  3. "What is the Easiest Way to Get Started with Agents? Crew AI." Reddit, https://www.reddit.com/r/ChatGPTCoding/comments/1c8u3zs/what_is_the_easiest_way_to_get_started_with/. "Getting into AI agents is pretty cool! For coding, tools are definitely evolving to make it easier to use AI without deep technical knowledge …"

Have questions or thoughts? Let’s discuss them on LinkedIn here.

Explore more about AI&U on our website here.


Exit mobile version